
技术Blog-4 | 新一代InfLLM:可训练的稀疏注意力机制
技术Blog-4 | 新一代InfLLM:可训练的稀疏注意力机制本文深入剖析 MiniCPM4 采用的稀疏注意力结构 InfLLM v2。作为新一代基于 Transformer 架构的语言模型,MiniCPM4 在处理长序列时展现出令人瞩目的效率提升。传统Transformer的稠密注意力机制在面对长上下文时面临着计算开销迅速上升的趋势,这在实际应用中造成了难以逾越的性能瓶颈。
本文深入剖析 MiniCPM4 采用的稀疏注意力结构 InfLLM v2。作为新一代基于 Transformer 架构的语言模型,MiniCPM4 在处理长序列时展现出令人瞩目的效率提升。传统Transformer的稠密注意力机制在面对长上下文时面临着计算开销迅速上升的趋势,这在实际应用中造成了难以逾越的性能瓶颈。
随着大语言模型 (LLM) 的出现,扩展 Transformer 架构已被视为彻底改变现有 AI 格局并在众多不同任务中取得最佳性能的有利途径。因此,无论是在工业界还是学术界,探索如何扩展 Transformer 模型日益成为一种趋势。
来自中国人民大学高瓴人工智能学院与值得买科技 AI 团队在 CVPR 2025 会议上发表了一项新工作,首次提出了一种从静态图像直接生成同步音视频内容的生成框架。其核心设计 JointDiT(Joint Diffusion Transformer)框架实现了图像 → 动态视频 + 声音的高质量联合生成。
在以 transformer 模型为基础的大模型中,键值缓存虽然用以存代算的思想显著加速了推理速度,但在长上下文场景中成为了存储瓶颈。为此,本文的研究者提出了 MILLION,一种基于乘积量化的键值缓存压缩和推理加速设计。
在斯坦福,有一门专门讲 Transformer 的课程,名叫 CS 25。
视频生成领域,又出现一位重量级开源选手。
2025 年 3 月 11 日,语音生成初创公司 Cartesia 宣布完成 6400 万美元 A 轮融资,距其 2700 万美元种子轮融资仅过去不到 3 个月。本轮融资由 Kleiner Perkins 领投,Lightspeed、Index、A*、Greycroft、Dell Technologies Capital 和 Samsung Ventures 等跟投。
AI21Labs 近日发布了其最新的 Jamba1.6系列大型语言模型,这款模型被称为当前市场上最强大、最高效的长文本处理模型。与传统的 Transformer 模型相比,Jamba 模型在处理长上下文时展现出了更高的速度和质量,其推理速度比同类模型快了2.5倍,标志着一种新的技术突破。
现有的可控Diffusion Transformer方法,虽然在推进文本到图像和视频生成方面取得了显著进展,但也带来了大量的参数和计算开销。
Transformer 很成功,更一般而言,我们甚至可以将(仅编码器)Transformer 视为学习可交换数据的通用引擎。由于大多数经典的统计学任务都是基于独立同分布(iid)采用假设构建的,因此很自然可以尝试将 Transformer 用于它们。